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A hybrid vibrational system containing a solid (a cylinder) with an elastic connection to a coaxial cylindrical 

cavity, completely filled with a heavy ideal stably stratified two-layer fluid, is considered. The combined 

self-consistent vibrations of the body and the fluid (of the internal waves) are studied. An explicit solution 

of the internal boundary value problem of an inhomogeneous liquid in an annular domain for a specified 

motion of the body is obtained. An integrodifferential equation of the Newton type is constructed on the 

basis of this. This equation describes the self-consistent oscillations of the cylinder. In the case of weak 

coupling of the interaction between the solid and the medium, an approximate solution is obtained using 

asymptotic methods and an analysis is carried out. Qualitative effects of the mutual effect of the motions of 

the cylinder and the fluid are found. 

1. DESCRIPTION OF THE MECHANICAL MODEL 

THE MOTIONS of the hybrid vibrational system which is shown schematically in Fig. 1 [(a) is a side OJ 
front view and (6) is a view from above] are investigated. There is a fixed cylindrical vessel B of 
radius 6, the axis of symmetry z of which is directed along a vertical. An inertial coordinate system 
xyz is associated with the vessel. A cylinder A of radius a, a < 6, and b - a-b is arranged coaxially 
in it. The height of the vessel and the cylinder are the same and equal to h. It is assumed that the 
internal cylinder A can be moved in a plane-parallel manner without friction from the sides of the 

(a) 

FIG. 1. 

t Prikl. Mat. Mekh. Vol. 55, No. 6, pp. 934-940, 1991. 

812 



Vibrations of a cylinder in a concentric vessel 813 

end walls. The generating lines and the end walls of the cavity B and the moving body A are 
assumed to be absolutely rigid. 

Vessel B is completely filled with an ideal two-layer fluid: the upper layer has a thickness hr > 0 
and a density p1 20 while the lower layer has a thickness h,>O (h, -h2- h) and a density p2 
(p2> pl), that is, the fluid is stably stratified. A gravitational force with an acceleration equal to g 
acts vertically downwards on the particles of the fluid (Fig. 1). The internal body A is elastically 
coupled to the fixed vessel B so that their axes are coincident in the equilibrium position. The 
coupling is assumed to be linear with a coefficient y. To be specific, we shall assume that the cylinder 
can be moved along the x-axis and the variable s = s(t) characterizes the deviation of the cylinder 
from the equilibrium position s = 0. We shall assume that the unperturbed surface of separation lies 
in the z = 0 plane, that is, in the xy plane (as shown in Fig. 1). 

The mechanical formulation of the problem involves the following. At the initial instant of time 
r = 0, the internal cylinder is assumed to be displaced along the x-axis by a small distance so, 
IsO)<&u--b-- a. The surface of separation of the two layers of fluid is horizontal and the fluid is at 
rest. Cylinder A is released and is set into motion without an initial velocity under the action of an 
elastic restitution force and reaction on the part of the fluid. It is required to determine the motions 
of the cylinder A, the kinematic and dynamic characteristics of the fluid in the cavity B and also the 
internal waves which arise at the surface of separation. 

2. FORMULATION OF THE BOUNDARY VALUE PROBLEM FOR THE FLUID FOR A 

SPECIFIED MOTION OF THE BODY 

The wave motions of the fluid are considered in the linear approximation [l]. As a consequence of 
the axial (cylindrical) symmetry of the problem, it is convenient to introduce the corresponding 
coordinates (I, 8, z) which vary within the limits 

a<r<b, 0<0<2n, -h,<z<h, 

We note that the fluid occupies the domain D = BiA, where \ is the operation of subtraction of the 
displaced set A from the fixed set B. This domain D is not simply connected. We denote by cpl and 
Q the velocity potentials in each end layer D, (h, 2 z> 0) and D2 (h2 d z< 0), D = D1 U D2. Let us 
represent them in the form 

'p1,2 = %,a (4 '9 0, 4 = Ql (A J-9 0) + a,,, (A r, 0, 2) 

@O = Q, (t, r, 0) = a2 (r2 + b2) (b2 - aa)-l r%’ (t) cos 8 (2.1) 

The first term a0 is the velocity potential created by the cylinder A moving with a velocity 
S’ = s’(t). It possesses the following properties: 

A@,, = 0, (r, 0, z) E D 

-@or’ La = s’ (t), aQr I& = 0 
(2.2) 

Here, the time t is treated as a parameter. It is more convenient to represent the Laplacian A in 
cylindrical coordinates (r, 13, z). The primes denote derivatives with respect to the spatial variables 
mentioned below and a derivative with respect to time t is indicated by a dot. The functions @, ,z also 
depend on the variable z. They are unknown and have to be determined; s’(t) = ds(t)ldt is the 
velocity of motion of the cylinder A along the x-axis. the velocity potentials of the wave motion of 
the fluids must be determined as solutions of the Laplace equation in the corresponding domains 
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A@ 1, z = 0, (1.9 0, 2) E D1, 2 (D = D, U 02) (2.3) 

which satisfy the dynamic and kinematic boundary conditions on the boundary of separation of the 
fluids z = 0 (the linear theory) 

Pz (@,’ - g&=0 - Pl PI’ - &Fl)r=o = -(I% - Pl) @o 

q' = -Q)1*' lz=o = -a&' ]r=o 
(2.4) 

Here n = n(t, r, 0) is an unknown function which determines the shape of the surface of 
separation of the fluids. Moreover, the condition of non-penetration of the fluids (of the 
impermeability of the walls) must be satisfied on the solid boundaries of the two cylinders, that is, 
the velocities of the fluid particles on the boundary of domain D are equal to zero: 

@lr’ ]r=hl = @I,’ ]~a, b = $1’ (r=+ = Q)zt’ Ir=a, b = 0 (2.5) 

In accordance with the assumptions which were made in Sec. 1, the initial conditions for the 
potentials @i,* have the form 

@I, a (0, F, ‘% 2) = 0, (I, 0, 2) E 4, a 

(pa%’ - P1~1’)r=0,2=0 + (pa - Pl) @‘o’ (0, 7, 0) = 0 (2.6) 

The first condition also denotes that the velocities of the fluid particles are equal to zero while the 
second denotes that the shape of the surface of separate rl I,=(, is planar [n (0, r, t3) = 0] [see the first 
condition of (2.4)]. 

So, the boundary value problem (2.3)-(2.5) with the initial conditions (2.6) is posed for a known 
(specified) motion s(t) of the cylinder A in the case of a stratified fluid. The solution of this equation 
@1.2(s, r, 0, z), q(f, r, 0) has to be determined. On this basis of this solution, we determine the 
dynamic rigidity conditions (in particular, the pressures on the surface of the moving cylinder A) 

and calculate the forces acting on the internal body due to the fluid. A Newton-type integrodifferen- 
tial equation of the dynamics is then set up for a motion of the cylinder s = s(t) taking account of all 
of the forces acting on the cylinder. The calculation of s (t) enables one to obtain expressions for the 
required kinematic and dynamic characteristics of the fluid in closed form (see below). 

In its conceptual plan, the formulation of the problem is close to the investigations in [2], which 
was concerned with the dynamics of a vessel which contains a two-layer fluid and is elastically 
coupled to a fixed base. In the investigation of the hydrodynamics of the problem however, the 
problem considered here differs considerably from that considered in [2]. It is much more difficult to 
solve, mainly due to the greater complexity of the domain D and the fact that it is not simply 
connected. We note that, in the general case, the shape of the cavity D is variable and depends on 
the motion of the internal body A. However, for small displacements s (s 4 a, b - a), this fact may be 
neglected in the linear approximation. 

3. SOLUTION OF THE BOUNDARY VALUE PROBLEM 

Using the method of separation of variables, we will represent the expressions for the unknown 
potentials @1,2 and the elevation q in the form of the series 
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Gy2 = cos 8 ; et* 2, (t) qn (hnr) ch (A,24 
ll=l 

(3.1) 

The dependence on 8 and z given in (3.1) follows from (2.3)-(2.5). The functions 6, and the 
numbers A, (n 2 1) are the solution of an eigenvalue problem and Sturm-Liouville functions of the 
form 

(3.2) 

The eigenfunctions $, = &&Y) are expressed in terms of the first-order Bessel function Jr and 
the Neumann function Ni in the following manner: 

*n (A,!) = J, (h,r) N1’ &,a) - Jr’ @,a) N1 (Q), a -G r < b (3.3) 

The eigenvalues h, (na 1) are determined as a two-parameter family of solutions of the 
transcendental equation 

J1’ (Lb) N1’ (ha) - J1’ (ha) iV1’ (hb) = 0 

h, = h, (a, b), n = 1, 2, . . .; h, = 0 (n), n + 00 (3.4) 

By introducting the parameter 5 = ah (or 5 = bh), we can reduce Eq. (3.4) to the form for which 
the roots 5, = c,,(p), where k = b/a > 1 (or k = a/b < 1). Hence, the solution of the characteristic 
equation reduces to the construction of the single-parameter family of roots E,,(p) for the values 
u.> 1 (or O< p < l), which is more convenient from a computational point of view. 

It can be shown by direct substitution that the functions @ 1 ,* (3.1) satisfy the Laplace equation 
and the boundary conditions (2.5) which are specified on the absolutely rigid walls (on the boundary 
of the domain D). By using the dynamic and kinematic conditions (2.4) which are satisfied in the 
linear approximation on the boundary of separation between the two fluids, we obtain a system of 
first-order ordinary differential equations in the unknown Fourier coefficients 0,(‘,*)(f), o,(t) 

p2 (ep” ch h,h, - g@,) - p1 (8;” ch A,& 

= 462 - PI) JLs” (~1 9 t > 0 

8,’ = f3,W.n sh 3L,h1 = --8,W, sh 
b 

- &4l) = 

M, 

(3.5) 

b 
f 

The estimates of the coefficients B, and 11$,11 have the form B, -n-l: )I$11 - 1. By differentiating 
the first equation of (3.5) and eliminating the unknown 0, using the second, we obtain the 
relationships 

@‘” + o,~@~@) = -(gin sh h,h,)-l B,con2s” (t) 

@W = _ ($2) sh %a~ 2 _ g(~-pdh,thh,hth1,hr 

TL n shA& ’ On - ~1 th A92 + ps th h,$ 

(3.6) 

for determining 0,c2) and On(‘). 
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Here o, (n = 1, 2, . . .) are the eigenfrequendes of the vibrations of the stratified fluid in the 
annular domain D. We note that w,+, -o,- lv II + 0 when n+ ~0, that is, the eigenfrequencies 
condense and they have a unique condensation point at infinity. Formula (3.6) is identical in form to 
those obtained in [2] in the case of a rectangular simply connected domain. For the time being it is 
assumed in Eq. (3.6) for 0,,c2) (t) that s(t) is triply continuously differentiable. Let us write the 
general solution for 0,(2)(t) in the form 

-r)s”‘(~)dz +a,sino,t+ ~,cos~,t 
I 

0 

where a, and Pn are arbitrary constants. On integrating by parts, we obtain an expression 
general solution t!lnC2) in the form 

t 
s’,” (q = - Bnwn 

gh, sh $,hz 
[-.ss”(0)sino,t+ o,s’(~)-c~~~ sino,(t-r)s’(r)dz+ 

s 
0 

+ a, sin o,t + Pn cos 0, t 
1 

which is more suitable for the subsequent investigation. 

(3.7) 

The function On(i) is obtained from 0nC2) (3.7) by multiplying by a constant coefficient in 
accordance with (3.6). On the basis of the initial conditions (2.6) for the potentials Q,,2, we get the 
initial conditions for the coefficients f&(l,*) and the derivatives 

for the 

@if’ ‘) (0) = 0, pa@?’ (0) ch h,h, - p,@,?’ (0) ch h,h, + 

+ (PP - P1) &s” (0) = 0 
(3.8) 

The equalities (3.8) are satisfied, if one puts (Y,, = s”(O), Pn = 0. Finally, we obtain the final 
expressions for the coefficients 0n(1.2) (n L 1): 

@j:‘“‘(t) = fs>Ji [o,s.(t)--o,aS~ino,(t-~)s’(r)dr] 
ll n 132 

0 

(3.9) 

By taking account of expressions (3.9), we obtain the required representations for the potentials 
(p1.2 (2.1). They are specified as linear integral operators of the unknown s’ (t). The variable s(t) is 
to be determined [l, 21. In order to set up the equations of motion of the inner cylinder A it is 
necessary to calculate the forces of reaction on the part of the vibrating fluid. 

4. MOTION OF THE INTERNAL CYLINDER 

In order to calculate the resulting forces of the pressures acting on the internal cylinder A, it is 
necessary to find the time derivatives cpi’ and (Pi* of the velocity potentials in each annular layer D1, 
02. For this purpose, we differentiate the series (2.1), (3.1) and (3.9) and find the distribution of the 
normal pressures using the linearized Bernoulli integral 

P = P(P’ - f%Y, P = Pl, a9 P = Pl, ¶ 
(4.1) 

‘p = (P1,29 0-9 0, 2) E DI, a 

The projections of the forces of the normal pressures R = (X, Y, Z)T (of the reactions) on the 
part of the fluid on the moving cylinder A are 
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an h 

X =--a ss pcp* lrEa cos 0 do az = 
o 4, 

O” =- naa 
[ ;“_“,: (P,hl+Palas)-~(Pa--Pl)~- 

n=1 
“;y 9, (hna,] s” (t) - 

-y (i)a - pl) 2 “; y.’ gn (h,~) i cos 0, (t -T) S- (q ar 
?I=1 

Y=Zs 0 (P =” P (z)) 

(4.2) 

(2, = 2 + ZA - MAg + 2, = 0) 

Here, account has been taken of the fact that integration of the hydrostatic pressure forces yields 
a null projection on the Ox and Oy axes. Furthermore, the quantity 2, in (4.2) is the repulsive 
Archimedean force, MAg is the force of the weight of the internal cylinder and Z, is the force of the 
normal reaction on its ends on the part of the cavity. Apart from this, a linear elastic force with a 
stiffness y acts on the cylinder A along the Ox axis. As a result, we get a Newton-type 
integrodifferential equation of motion with the initial conditions 

i&s” = --ys + X (s”, [s’]), s (0) = so, s’ (0) = 0 (4.3) 

It follows from an analysis of expression (4.2) of the force X in (4.3) that the force X contains an 
inertial addition which is proportional to s”(t) and is due to the coupled masses (of a stationary and 
dynamic character) and, also, a term which is an integral of s’(t) which takes account of the 
interaction between the waves and the cylinder. This interaction is described by an integral operator 
of the Volterra type. It obviously follows from (4.2) and (4.3) that, when cp = 0 the displacement 
S(t)=?, t>O (s’(t)=O). 

Let us now transform the Cauchy problem (4.3) to a form which is more convenient for analysis: 

t 

~“+Q~s=-s K(t-q.qqaz, s(o)=so, s-(o)=~ s 
0 

iP=&, M*= MA+naa /,a__a’ 

eK (t) = “n;;p” 2 ‘;;; - -COSOJ = e 
c 

k, cos o,t 
n=1 7l=l 

(4.4) 

Here 0 is the characteristic frequency of the oscillations of the cylinder A, M * is its effective 
mass, E >O is a numerical parameter, for example, E = 2aa2h(p2 - pl)IM *, and K(t -r) is the 
difference kernel of the integral operator. The corresponding trigonometric series for K(t) is 
absolutely and uniformly converge_nt for all ta0 since, according to (3.5) and (3.6) the estimates 
B,-A,-‘-n-’ and 6+,-h,1’2- gn hold for B, and w, when n+ w and the coefficients k,-np2. 
We note that problem (4.4) is identical to that obtained in [2] with respect to its external form. 

An exact solution of the Cauchy problem (4.4) can be constructed using operator methods. 
However, it turns out to be inconvenient for qualitative analysis [2]. In the general case, numerical 
methods can be used to calculate the motions in a certain bounded time interval. If the interaction 
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between the cylinder and the internal waves is small, that is, the numerical parameter t-‘ is 

sufficiently small (0~ E < 1) then, for the qualitative analysis of system (4.4), use can be made of the 
asymptotic average methods developed in [2, 31. The mathematical basis of these methods is given 
in [4]. We will now present the results of this analysis. 

Let us first consider the case of an “internal resonance” where, for values of 12 = N =_I, 2, 
which are not too large, the closeness of the frequency oN and R holds: ) f2 - oN 1 = @v/t: ). Then. 
according to [2], we have 

s * = so cos 1/&t co9 at, Is-s* l=wG 

v *= --SOS2 cos J&G sin Rt, 1 s’ - v* 1 = 0 (V-F) (4.5) 
0 < t < c I I/e, c = const 

It follows from (4.5) that “beating” occurs in the system, that is, the amplitude S of the 
oscillations of the cylinder A varies periodically with a low frequency --V/E since we have 
S = s”cos~(~kN)t. There is a slow exchange of energy between the cylinder and the fluid and, at 
each stage, there is a transfer of the energy E of the oscillations of the cylinder to the internal waves 
of the Nth mode and a change in its total energy up to values of O(~/E), that is, practically to zero 
(for small E): E = E’cos*~(E~~)~ + O(~/E) which is followed again by the build up of an oscillation 
of the cylinder by means of the action of the Nth mode of the vibrations of the internal wave. The 
mathematical details of the analysis are contained in [2]. 

There is considerable interest in the theoretical and applied aspects of the investigation of the 
motions in the case of very large values oft, t% l/g/~ such as t- l/~ or t-3 cc,, for example. It is clear 
from physical considerations that the picture of the beats will be blurred; allowance for dissipation 
naturally leads to a decay in the oscillations of the cylinder and the internal waves of the fluid. 

Let us now consider the case when there is no internal resonance, that is, when 1 Cl - co,) = O(1) 
for n = 1, 2, . . . Then, in accordance with the results in [3], we have: 

s* = so cos vt, 1 s - s* I = 0 (8) 

v* zz -sol2 sin Vt, I s’ - v* I = 0 (81 (4.6) 

m 

Y=Y(&)=Q(1+&R/4), A= ’ Qa2m1 z 
rr=l 

n 

A2 < 0; 0 < t < c I E, c = const 

It follows from (4.6) that, when there is no resonance fort - I/E, there is practically no interaction 

between the oscillations of the cylinder and the fluid (there are no beats and the energy of the 
cylinder is conserved for small E > 0). However, the oscillations of the cylinder have a frequency 
which is shifted by an amount O(E). The addition to the frequency may be greater or less than zero, 
which is an extremely interesting phenomenon. As previously, in the case when there is no 
resonance, the question as to the global readjustment of the motion for t% l/c (t-+ CQ) is of interest. 

The results obtained above hold for arbitrary values of the parameters a, b, hl, h2 and for other 
changes in them in the above-mentioned domains. There is considerable interest in the limiting 
casessuchas,forexample,whena/b~1(a~O,b-1)orbla~1(a-1,b~~),etc.Thefirstofthe 
cases mentioned above can obviously be investigated on the basis of the constructions in Sets 2-4. 
The case when b-+ ~4 is special since the frequency spectrum of the internal waves is condensed, that 
is, the eigenvalues A, become continuous in the limit. This is an important fact which requires a 
separate treatment. 
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If the solution s(t) of the Cauchy problem (4.4) is constructed in an analytical or numerical form, 
all the kinematic and dynamic characteristics of the motions of the fluid are determined using the 
constructions in Sets 2 and 3 and formula (4.1). 
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THE THERMAL WAKE OF A STREAMLINED BODY? 

N. I. YAVORSKII 

Novosibirsk 

(Received 31 August 1990) 

The stationary problem of the thermal wake behind a body around which there is a flow of a viscous 

incompressible fluid is considered within the framework of the full heat-conduction equation. It is assumed 

that the solution of the corresponding hydrodynamic problem is known. In the case of the hydrodynamic 

problem, theorems of existence [l, 21 and uniqueness [l] have been proved and the leading term of the 

expansion [l, 31 at an infinitely remote point has been obtained together with estimates of the remaining 

terms [l, 41. Work mainly carried out within the framework of the boundary layer approximation [5] is 

concerned with the solution of the thermal problem. 

1. THE SOLUTION of the hydrodynamic problem can be represented in the form 

v(x)=vO+w(x), w=O(l/r), r=jxJ (1.1) 
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